References and Notes
<A NAME="RU05709ST-1">1</A>
Gennis RB.
Biomembranes: Molecular Structure and Function
Springer;
New
York:
1989.
<A NAME="RU05709ST-2A">2a</A>
Woese CR.
Fox GE.
Proc.
Natl. Acad. Sci. U.S.A.
1977,
74:
5088
<A NAME="RU05709ST-2B">2b</A>
Tornabebe TG.
Langworthy TA.
Science
1979,
203:
51
<A NAME="RU05709ST-2C">2c</A>
De Rosa M.
Gambacorta A.
Gliozzi A.
Microbiol.
Rev.
1986,
50:
70
<A NAME="RU05709ST-2D">2d</A>
Comita PB.
Gagosian RB.
Pang H.
Costello CE.
J.
Biol. Chem.
1984,
254:
15234
<A NAME="RU05709ST-3A">3a</A>
van de Vossenberg JLCM.
Driessen AJM.
Konings WN.
Extremophiles
1998,
2:
163
<A NAME="RU05709ST-3B">3b</A>
Daniel RM.
Cell Mol. Life Sci.
2000,
57:
250
<A NAME="RU05709ST-3C">3c</A>
DeLong EF.
Proc. Natl. Acad. Sci. U.S.A.
2006,
103:
6417
For recent reviews on synthetic
archaeal membrane lipid analogues, see:
<A NAME="RU05709ST-4A">4a</A>
Benvegnu T.
Brard M.
Plusquellec D.
Curr.
Opin. Colloid Interface Sci.
2004,
8:
469
<A NAME="RU05709ST-4B">4b</A>
Benvegnu T.
Lemiègre L.
Cammas-Marion S.
Eur.
J. Org. Chem.
2008,
28:
4725
<A NAME="RU05709ST-5A">5a</A>
Menger FM.
Chen XY.
Tetrahedron
Lett.
1996,
37:
323
<A NAME="RU05709ST-5B">5b</A>
Menger FM.
Chen XF.
Brocchini S.
Hopkins HP.
Hamilton D.
J. Am. Chem. Soc.
1993,
115:
6600
<A NAME="RU05709ST-5C">5c</A>
Yamauchi K.
Sakamoto Y.
Moriya A.
Yamada K.
Hosokawa T.
Higuchi T.
Kinoshita M.
J.
Am. Chem. Soc.
1990,
112:
3188
<A NAME="RU05709ST-5D">5d</A>
Moss RA.
Li JM.
J.
Am. Chem. Soc.
1992,
114:
9227
<A NAME="RU05709ST-5E">5e</A>
Fuhrhop J.-H.
David HH.
Mathieu L.
Liman U.
Winter HJ.
Boekema E.
J. Am. Chem. Soc.
1986,
108:
1785
<A NAME="RU05709ST-5F">5f</A>
Meglio CD.
Rananavare SB.
Svenson S.
Thompson DH.
Langmuir
2000,
16:
128
<A NAME="RU05709ST-5G">5g</A>
Kim JM.
Thompson DH.
Langmuir
1992,
8:
637
<A NAME="RU05709ST-5H">5h</A>
Ladika M.
Fisk TE.
Wu WW.
Jons SD.
J. Am. Chem.
Soc.
1994,
116:
12093
<A NAME="RU05709ST-5I">5i</A>
Eguchi T.
Arakawa K.
Terachi T.
Kakinuma K.
J. Org. Chem.
1997,
62:
1924
<A NAME="RU05709ST-5J">5j</A>
Eguchi T.
Ibaragi K.
Kakinuma K.
J.
Org. Chem.
1998,
63:
2689
<A NAME="RU05709ST-5K">5k</A>
Patwardhan AP.
Thompson DH.
Org.
Lett.
1999,
1:
241
<A NAME="RU05709ST-6A">6a</A>
Miyawaki K.
Takagi T.
Shibakami M.
Synlett
2002,
1326
<A NAME="RU05709ST-6B">6b</A>
Miyawaki K.
Goto R.
Takagi T.
Shibakami M.
Synlett
2002,
1467
<A NAME="RU05709ST-6C">6c</A>
Miyawaki K.
Harada A.
Takagi T.
Shibakami M.
Synlett
2003,
349
<A NAME="RU05709ST-6D">6d</A>
Nakamura M.
Tadokoro T.
Goto R.
Shibakami M.
J. Colloid Interface
Sci.
2007,
310:
630
<A NAME="RU05709ST-6E">6e</A>
Ono Y.
Namekata M.
Goto R.
Nakamura M.
Shibakami M.
Synlett
2009,
759
<A NAME="RU05709ST-7A">7a</A>
Carvalho JF.
Prestwich GD.
J. Org. Chem.
1984,
49:
1251
<A NAME="RU05709ST-7B">7b</A>
Qin D.
Byun H.
Bittman R.
J.
Am. Chem. Soc.
1999,
121:
662
<A NAME="RU05709ST-7C">7c</A>
Hirth G.
Barner R.
Helv. Chim. Acta
1982,
65:
1059
<A NAME="RU05709ST-8">8</A>
Oikawa Y.
Yoshioka T.
Yonemitsu O.
Tetrahedron
Lett.
1982,
23:
885
<A NAME="RU05709ST-9A">9a</A>
Uenishi J.
Hiraoka T.
Yuyama K.
Yonemitsu O.
Heterocycles
2000,
52:
719
<A NAME="RU05709ST-9B">9b</A>
Taylor EC.
Macor JE.
Pont JL.
Tetrahedron
1987,
43:
5145
<A NAME="RU05709ST-10">10</A>
Hayashi Y.
Kinoshita Y.
Hidaka K.
Kiso A.
Uchibori H.
Kimura T.
Kiso Y.
J.
Org. Chem.
2001,
66:
5537
<A NAME="RU05709ST-11">11</A>
To a solution of 11 (15.9
mg, 12.9 µmol) in MeOH (0.5 mL) and CHCl3 (1
mL) was added p-TsOH˙H2O
(250 µg, 1.3 µmol). After stirring at r.t. for
22 h, the reaction was diluted with CHCl3 (20 mL). The
solution was then washed subsequently with sat. aq NaHCO3 (10
mL) and brine (10 mL). The organic layer was dried over anhyd Na2SO4 and concentrated
under reduced pressure. Purification of the residue was done by
flash chromatography (silica, CHCl3-MeOH, 20:1)
on a Biotage SP1 flash system to give 1 (6.8 mg,
72%) as a white solid.
<A NAME="RU05709ST-12">12</A>
All new compounds gave satisfactory
analytical and spectral data. Selected physical data are as follows.
Compound 9: R
f
0.57 (hexane-EtOAc,
10:1). ¹H NMR (CDCl3): δ = 7.43
(d, J = 7.0 Hz, 12 H), 7.30
(t, J = 7.5 Hz, 12 H), 7.24
(t, J = 7.3 Hz, 6 H), 3.29-3.56
(m, 10 H), 3.14-3.24 (m, 4 H), 2.22 (t, J = 7.0
Hz, 4 H), 1.46-1.59 (m, 8 H), 1.24-1.38 (m, 16
H). ¹³C NMR (CDCl3): δ = 143.72,
128.52, 127.72, 126.97, 86.71, 78.31, 77.37, 77.26, 70.56, 65.28,
63.11, 52.29, 29.87, 29.29, 29.15, 28.90, 28.65, 28.20, 27.37, 26.57, 25.88,
19.07. MS (TOF): m/z [M + Na]+ calcd
for C64H72N6O4Na: 1011.55073;
found: 1011.54383. Compound 10: R
f
0.29-0.44
(hexane-EtOAc, 2:1; tailing). ¹H NMR
(CDCl3): δ = 7.44 (d, J = 7.3
Hz, 12 H), 7.30 (t,
J = 7.5
Hz, 12 H), 7.24 (t, J = 7.2
Hz, 6 H), 5.76 (br s, 2 H), 3.11-3.59 (m, 14 H), 2.05-2.25
(m, 8 H), 2.08 (m, 4 H), 1.93 (m, 2 H), 1.20-1.75 (m, 44
H). ¹³C NMR (CDCl3): δ = 172.94,
143.72, 128.60, 127.81, 127.04, 86.72, 84.59, 77.44, 70.10, 68.12,
65.26, 63.76, 40.62, 36.73, 29.97, 29.29, 29.08, 29.04, 28.76, 28.50,
28.35, 28.28, 26.12, 25.63, 19.14, 18.31. MS (TOF): m/z [M + Na]+ calcd
for C84H104N2O6Na: 1259.77866;
found: 1259.77685. Compound 11: R
f
0.65
(hexane-EtOAc, 1:1). ¹H NMR (CDCl3): δ = 7.44
(d, J = 7.6 Hz, 12 H), 7.30
(t, J = 7.6 Hz, 12 H), 7.23
(t, J = 7.2 Hz, 6 H), 5.80 (br
s, 2 H), 3.30-3.74 (m, 8 H), 3.08-3.24 (m, 6 H),
2.03-2.34 (m, 12 H), 1.44-1.69 (m, 16 H), 1.24-1.42
(m, 28 H). ¹³C NMR (CDCl3): δ = 172.92,
143.77, 128.65, 127.83, 127.06, 86.75, 70.11, 65.40, 63.83, 40.70,
36.84, 30.01, 29.31, 29.08, 28.80, 28.72, 28.63, 28.28, 28.23, 26.26,
25.74, 19.16. MS (TOF): m/z
[M + H]+ calcd
for C84H103N2O6: 1235.78107;
found: 1235.76957. Compound 1: R
f
0.32
(CHCl3-MeOH, 20:1). ¹H NMR
(CDCl3): δ = 5.90 (br s, 2 H), 3.32-3.69
(m, 14 H), 3.21 (br s, 2 H), 2.17-2.34 (m, 12 H), 1.48-1.68
(m, 16 H), 1.24-1.44 (m, 28 H). ¹³C
NMR (CDCl3-CD3OD, 20:1): δ = 78.03,
77.37, 69.89, 65.30, 60.81, 50.17, 49.30, 39.58, 36.48, 29.86, 29.12,
28.91, 28.87, 28.63, 28.52, 28.47, 28.09, 28.04, 25.93, 25.59, 19.03.
MS (TOF): m/z [M]+ calcd for
C46H74N2O6: 750.55414;
found: 750.54743.
<A NAME="RU05709ST-13A">13a</A>
Tieke B.
Adv. Polym. Sci.
1985,
17:
79
<A NAME="RU05709ST-13B">13b</A>
Ringsdorf H.
Schlarb B.
Venzmer J.
Angew.
Chem., Int. Ed. Engl.
1988,
27:
113
<A NAME="RU05709ST-13C">13c</A>
Okada S.
Peng S.
Spevak W.
Charych DH.
Acc. Chem. Res.
1998,
31:
229
<A NAME="RU05709ST-13D">13d</A>
O’Brien DF.
Armitage B.
Benedicto A.
Bennet
DE.
Lamparksi HG.
Lee Y.-S.
Srisri W.
Sisson TM.
Acc.
Chem. Res.
1998,
31:
861
<A NAME="RU05709ST-13E">13e</A>
Carpick RW.
Sasaki DY.
Marcus MS.
Eriksson MA.
Burns AR.
J. Phys.: Condens.
Matter
2004,
16:
R679
<A NAME="RU05709ST-13F">13f</A>
Reppy MA.
Pindzola BA.
Chem.
Commun.
2007,
4317
<A NAME="RU05709ST-14">14</A>
We often observed that the aggregates
made from diacetylenic cyclic lipids were frizzling on the grid
during the TEM observations. Thus we think that the electron beam irradiation
triggered the formation of the helical ribbons.
<A NAME="RU05709ST-15">15</A>
Similar helical ribbons were observed
in our previous studies, although they differed in size.6c,¹6
<A NAME="RU05709ST-16">16</A>
Shibakami M.
Miyawaki K.
Goto R.
Shigeno M.
Jpn. J. Appl. Phys.
2004,
43:
4655
<A NAME="RU05709ST-17">17</A>
One reason for such a high degree
of stability of the ribbons is the polydiacetylene structure that
was formed during the first TEM observation.